Boundary of Groups

Yulan Qing

Fudan University Shanghai Center for Mathematical Sciences

February 2023

Geometric Group Theory: using geometric, topological and dynamical methods to study algebraic properties of groups.

$$G = \langle s_1, s_2, \dots \mid r_1, r_2 \dots \rangle$$

Useful spaces:

- 1. Cayley graph:
 - vertices: $g \in G$.
 - edges: (g, gs), where s is a generator.
- 2. Surfaces and manifolds, other complexes.
- 3. Word Problem: Find a uniform test or mechanical procedure (i.e. an algorithm) which, given a word $w = s_{i_1}s_{i_2}s_{i_3}...$, can decide whether w = 1.

Canonical equivalence classes: quasi-isometry equivalence

Different Cayley graphs of finitely generated groups are quasi-isometric to each other.

Definition

Let (X_1, d_1) and (X_2, d_2) be metric spaces. A map $\Phi: X_1 \to X_2$ is called a (q, Q)-quasi-isometric embedding if there exist constants $q \ge 1$ and $Q \ge 0$ such that for all $x, y \in X_1$

$$rac{1}{q}d_1(x,y)-Q\leq d_2(\Phi(x),\Phi(y))\leq qd_1(x,y)+Q.$$

"If a group G is quasi-isometric to a Euclidean plane, then G is virtually \mathbb{Z}^2 ."

Curvature in general metric spaces: Gromov hyperbolicity.

 δ -hyperbolic space: there exists a constant δ such that every triangle is δ -thin. A group is δ -hyperbolic if its Cayley graph is δ -hyperbolic.

- Free groups of finite rank.
- Fundamental groups of closed surfaces of genus at least 2; Fundamental groups of closed, hyperbolic manifolds of higher dimensions.

This idea by Gromov led to a major breakthrough in geometric and combinatorial group theory in the following sense: **Gromov** 87:

- solvable word problem.
- Finitely presented. If torsion free, then finite cohomological dimension.
- A generic group is hyperbolic.

Figure: A trivial word is a loop in the Cayley complex.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Boundary in hyperbolic groups: the space of all directions

Definition

Let X be the Cayley graph of a hyperbolic group G. Elements: infinite geodesic rays emanating from the base-point. Equivalence class: fellow traveling.

Cone topology: $\mathcal{N}(\gamma, t, \epsilon) = \{\sigma \in \partial X | d(\sigma(t), \gamma(t)) < \epsilon\}.$

We call this topological space the Gromov boundary of G. The boundary is <u>well-defined</u> with respect to the associated group, compact, and metrizable (Gromov, 87).

Gromov boundary

Properties of the Gromov boundary:

- Group-invariant and metrizable;
- Large: different geodesic rays and different sample paths in a random walk end up at different points in the Gromov boundary.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Canon's Conjecture: If G is hyperbolic and ∂G is a 2-sphere, then G is virtually Kleinian.

What about non-hyperbolic groups?

image credit: Andrew Yeghnazar

- Consider all directions: visual boundary of CAT(0) spaces, not a group invariant (Croke-Kleiner 00, Qing 16).
- Consider only the directions behaving like directions in Gromov hyperbolic space: Morse boundary, a *small* set of directions in some sense.(Charney-Sultan 13, Cordes 15)

Sublinearly-Morse directions

Space: (X, \mathfrak{o}) is a proper, geodesic space, with a fixed base-point \mathfrak{o} . A geodesic ray γ is Morse if there exists a family of *gauge* functions $m_{\gamma}(q, Q)$: $\mathbb{R}^2 \to \mathbb{R}$ such that any (q, Q)-quasi-geodesic segment α with endpoints on γ is in a m(q, Q)-neighbourhood of γ .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Consequences:

- Quasi-isometry invariant.
- Fellow travel implies uniform fellow travel.

Fix a sublinear function $\kappa(t)$. Let $||x|| = d(\mathfrak{o}, x)$.

A κ -neighbourhood around a quasi-geodesic γ is a set of point x $\mathcal{N}_{\kappa}(\gamma, n) := \{x \mid d(x, \gamma) \leq n \cdot \kappa(||x||)\}$

Figure: A κ -neighbourhood of γ

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition of κ -Morse directions

A quasi-geodesic ray γ is κ -Morse if there exists a family of functions $m_{\gamma}(q, Q) : \mathbb{R}^2 \to \mathbb{R}$ such that any (q, Q)-quasi-geodesic segment α with endpoints on γ is in $\mathcal{N}_{\kappa}(\gamma, m_{\gamma}(q, Q))$.

イロト 不得 トイヨト イヨト

Consider all κ -Morse quasi-geodesic rays in (X, \mathfrak{o}) . we say $\alpha \sim \beta$ if α, β sublinearly fellow travel, i.e.

$$\lim_{t\to\infty}\frac{d(\alpha(t),\beta(t))}{t}=0.$$

The equivalence classes are elements of $\partial_{\kappa} X$. Topology

- The cone topology on all κ-Morse geodesic rays does not produce a Ql-invariant space (Cashen, 19).
- Check the associated fellow traveling property for all quasi-geodesic rays for a bounded set of quasi-constants.

Equivalent Definition: "sublinear fellow travel implies uniform sublinear fellow travel".

A quasi-geodesic ray γ is κ -Morse if there exists a family of functions $m'_{\gamma}(q, Q) : \mathbb{R}^2 \to \mathbb{R}$ such for any sublinear function κ' and for any r > 0, there exists R such that for any (q, Q)-quasi-geodesic segment α we have that:

$$d(\alpha_R,\gamma) < \kappa'(R) \Longrightarrow lpha|_r \in \mathcal{N}_\kappa(\gamma, m'_\gamma(q, Q)).$$

ション (日本) (日本) (日本) (日本)

Let $\partial_{\kappa} X$ denote the equivalence class of all κ -Morse quasi-geodesic rays equipped with the coarse cone topology.

Theorem (Q-Rafi 19, Q-Rafi-Tiozzo 21)

Let X be a proper, geodesic metric space. Fix a sublinearly function κ , the $\partial_{\kappa}X$ is a topological space that is invariant under quasi-isometry of X, and metrizable.

In particular, for every finitely generated group G and for every sublinear function κ , $\partial_{\kappa}G$ is well defined up to homeomorphism and it is a metrizable space.

ション ふぼう メリン メリン しょうくしゃ

Examples:

- Z²: ∂_κZ² = Ø.
 H²: every (quasi-)geodesic ray
- 𝔅¹: every (quasi-)geodesic ray is Morse and hence sublinearly Morse: ∂_κ𝔅¹ = S¹.

Figure: A tree of flats.

ション ふぼう メリン メリン しょうくしゃ

thickness of the neighborhood in the n^{th} flat: $\sim n$ distance of the n^{th} flat to the origin: $\sim n^2$.

Specific classes of groups and spaces of negative curvature feature:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

CAT(0) Space

Non-positively curved spaces (Cartan, Aleksandrov and Toponogov).

Figure: Model spaces, real 2-dimensional Riemannian manifold.

Figure: non-fat triangles

Examples include right-angled Artin groups, some braid groups and right-angled Coxeter groups, etc. CAT(0) groups have solvable word problems.

Evidence of genericity of sublinear directions: Patterson-Sullivan measures

Definition

More generally, let $G \curvearrowright X$ be any properly discontinuous action of a countable group on a metric space. For $\mathfrak{o} \in X$ let $B_R(\mathfrak{o})$ be the ball of radius R in X centered at \mathfrak{o} . The (possibly zero or infinite) quantity

$$\delta_X(G) = \limsup_{R o \infty} R^{-1} \log |B_R(\mathfrak{o}) \cap G \cdot \mathfrak{o}|$$

ション ふぼう メリン メリン しょうくしゃ

is called the critical exponent of the action $G \curvearrowright X$.

For $x, y \in X$ and $\zeta, \alpha \in \partial_{vis} X$ define the Busemann function

$$\beta_{\zeta}(x,y) = \lim_{z \to \zeta} d(x,z) - d(y,z).$$

A $\delta(G)$ -conformal density for $G \curvearrowright X$ is an absolutely continuous family of finite Borel measures $\nu_x, x \in X$ on the limit set L(G) such that

$$d\nu_x/d\nu_y(\zeta) = \exp(\delta(G)\beta_\zeta(y,x))$$

and $g\nu_x = \nu_{g^{-1}x}$ for any $x, y \in X$ and $g \in G$.

Figure: A fraction of the directions.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

When $G \curvearrowright X$ is properly discontinuous and cocompact there is a unique conformal density for $G \curvearrowright X$; the measure ν_{σ} is called the Patterson-Sullivan measure.

Wenyuan Yang 22: Morse boundary is measure zero in the visual boundary of CAT(0) spaces with Patterson-Sullivan measure.

Theorem (Gekhtman-Q.-Rafi 22)

Let $G \curvearrowright X$ be a countable group acting properly discontinuously by isometries on a geodesically complete rank-1 CAT(0) space X. Assume the action is cocompact. Let ν be the Patterson-Sullivan measure on the visual boundary of X. Then ν gives measure zero to the complement of sublinearly Morse directions.

Application: random walk on groups and Poisson boundaries

Let $\langle S \rangle$ be a symmetric generating set with a probability distribution μ . A random walk is a process on a group G (or its Cayley graph) where sample paths are $s_{r_1}s_{r_2}s_{r_3}..., s_{r_i} \in \langle S \rangle$.

Figure: A random walk.

Consider the set of all sample paths. We say two sample paths are equivalent if they coincide from some step onward.

ション ふぼう メリン メリン しょうくしゃ

► In hyperbolic groups, random walks tend to the boundary in linearly speed. In Z² random walks are recurrent.

Random walk on the free group vs. random walk on abelian group.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Poisson boundary

The asymptotic behaviour of all random walks is encoded by the *Poisson boundary*.

Definition

Given a finitely generated group and a probability measure μ with finite support, its *Poisson boundary* is the maximal measurable set to which almost all sample paths converge, with hitting measure ν arising from μ .

A natural problem is to determine when this space is trivial and, if it is not, to exhibit a geometric model.

Kaimanovich 96: Let G be a hyperbolic group, then Gromov boundary is a model for its associated Poisson boundary.

Relative hyperbolic groups

Definition

Relative hyperbolic group: A group G is *relatively hyperbolic* with respect to a subgroup H, if

- I. after contracting the Cayley graph of G along H-cosets, the resulting graph equipped with the usual graph metric becomes a δ -hyperbolic space, and
- II. Pairs of quasi-geodesics sharing the endpoints have bounded coset penetration property.

Image created by C. McMullen, A. Mohammadi and H. Oh

ション ふぼう メリン メリン しょうくしゃ

Mapping class group: Let ${\cal S}$ be a closed, oriented surface and consider

 $Map(S) := Homeo^+(S)/Isotopy$

Thurston's drawing 1971.

Mapping class groups are in general not hyperbolic or relatively hyperbolic, not CAT(0). It acts nicely on curve graphs:

Curve graphs are infinite diameter and hyperbolic.

Theorem (Q-Rafi-Tiozzo, 21)

Let G be either

a non-elementary relatively hyperbolic group, or

a mapping class group,

and let μ be a probability measure whose support is finite and generates G as a semigroup. Then for $\kappa(t) = \log(t)$, we have:

- 1. Almost every sample path (w_n) converges to a point in $\partial_{\kappa}G$;
- The κ-Morse boundary (∂_κG, ν) is a model for the Poisson boundary of (G, μ) where ν is the hitting measure associated to the random walk driven by μ.

Proof idea: logrithmic excursions in projection system (Sisto-Taylor, 19).

The theorems address open questions regarding the invariance of Poisson boundaries posed by Kaimanovich.

- Relative hyperbolic groups
- Curve complex of subsurfaces in mapping class group.
- Hierarchically hyperbolic groups.

Let G be a group and let $(S, Z_0, \{\pi_Z\}_{Z \in S}, \pitchfork)$ be a projection system on G. Let (w_n) be a random walk on G. Then there exists $C \ge 1$ so that, as n goes to ∞ ,

$$\mathbb{P}\big(\sup_{Z\in\mathcal{S}}d_Z(1,w_n)\in [C^{-1}\log n,C\log n]\big)\to 1$$

Inhyeok Choi 22: any finitely generated group with two independent contracting isometries.

Theorem (Karlsson-Margulis 99, Nevo-Sageev 11) Let G acts geometrically on a CAT(0) space X. The visual boundary of X is a topological model for the Poisson boundary of G.

Theorem (Gekhtman-Qing-Rafi, 22)

For any rank-1 CAT(0) group G, there exists κ such that the κ -contracting boundary of the group a topological model for its Poisson boundary.

ション ふゆ アメビア メロア しょうくしゃ

Idea: frequently contracting rays

010010110101000001001111....

A unit speed parametrized geodesic ray $\tau : [0, \infty) \to X$ is (N, C)-frequently contracting for constant N, C > 0 if: For each L > 0 and $\theta \in (0, 1)$ there is an $R_0 > 0$ such that for $R > R_0$ and t > 0 there is an interval of time $[s - L, s + L] \subset [t, t + \theta R]$ and an N -contracting geodesic γ such that,

$$u \in [s - L, s + L] \Longrightarrow d(\tau(u), \gamma) \leq C.$$

That is, every subsegment (of τ) of length θR contains a segment of length 2*L* that is *C*-close to an *N*-contracting geodesic γ .

Important detail: the minimal κ -function varies with different groups!

Theorem (Q.-Tiozzo 19, Q.-Rafi-Tiozzo 21)

the Poisson boundary can be identified with $\partial_{\kappa}G$ for the following groups.

- Right-angled Artin groups, $\kappa(t) = \sqrt{t \log t}$.
- Relative hyperbolic groups, $\kappa(t) = \log t$
- Mapping class groups, $\kappa(t) = \log t$.

Other properties of the sublinearly Morse boundaries of CAT(0) spaces:

- ► Visibility space: there exists a geodesic line that connects two classes in ∂_κX (Zalloum).
- Minimality: for each a ∈ ∂_κX, G ⋅ a is dense in ∂_κX (Q.-Zalloum).
- Sublinearly Bilipschitz equivalence invariant (Pallier -Q.).

superlinear divergence (Murray-Q.-Zalloum).

Sublinear BiLipschitz Equivalence (Cornulier, 09)

Definition (θ -SBE)

Let (X, \mathfrak{o}) and (Y, \mathfrak{o}) be proper geodesic metric spaces with basepoints. Let $L \ge 1$ be a constant, and let θ be a sublinear function as before. We say that $\Phi : X \to Y$ is a (L, θ) -sublinear biLipschitz equivalence $(\theta$ -SBE) if

$$\frac{1}{L}d(x_1, x_2) - \theta(\max(\|x_1\|, \|x_2\|)) \leqslant d(\Phi(x_1), \Phi(x_2)))$$

$$\leqslant Ld(x_1, x_2) + \theta(\max(\|x_1\|, \|x_2\|))$$

and $Y = \mathcal{N}_{\theta}(\Phi(X), D)$ for some $D \ge 0$.

Theorem

Gromov hyperbolicity admits a characterization in terms of asymptotic cones, it is an SBE-invariant property.

Goal: Find other properties that are SBE invariant.

Theorem (Pallier-Q. 23')

Let Φ be an θ -SBE between two proper geodesic spaces X and Y. Suppose $\theta \leq \kappa$. Then Φ induces a homeomorphism $\Phi_{\star} : \partial_{\kappa} X \to \partial_{\kappa} Y$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Key idea: the image of a κ -Morse quasi-geodesic ray under a θ -SBE is still a κ -Morse set.

Application: Asymptotic cones of right-angled Coxeter groups

Definition

Let G be a simplicial graph on a set of S elements, then

$$W = \langle s \in S : s^2 = 1, \text{ and } st = ts \text{ if } (s,t) \in E(G) \rangle$$

is a right-angled Coxeter group.

Examples

- If G is the complete graph on S, then $W = (\mathbb{Z}/2\mathbb{Z})^{|S|}$.
- If G has no edges, then W = Z/2Z ★ ... ★ Z/2Z, the free product of |S| copies of Z₂.

Example (Behrstock, 2015)

Figure: The graph for the group W vs W_{13}

Casals-Ruiz, Hagen and Kazachkov (working draft): W and W_{13} have unique asymptotic cones.

Question: Are W_{13} and W sublinearly biLipschitz equivalent? Answer: No. Since $\partial_{\kappa}W_{13}$ and $\partial_{\kappa}W$ are not homeomorphic, by the main theorem, the associated spaces cannot be SBE.

Compactification of the sublinearly Morse boundaries:

Let α, β be two quasi-geodesic rays in (X, \mathfrak{o}) . We say that $\alpha \leq \beta$ if any only if there exists a pair of constants (q, Q) such that for every r > 0 there exists a (q, Q) quasi-geodesic ray γ^r such that

 $\gamma^{r}|_{r} = \alpha|_{r}$ and γ eventually coincides with β .

We say $\alpha \sim \beta$ if $\alpha \preceq \beta$ and $\beta \preceq \alpha$. Let P(X) denote the equivalence classes of all quasi-geodesic rays under \sim .

ション ふゆ アメビア メロア しょうくしゃ

Example: Baumslag Solitar groups.

Theorem (Q.-Rafi, 23)

Let G be a relative hyperbolic group with respect to subgroups that are flat-like. Then there exists a boundary ∂G that is

- ▶ QI-invariant;
- Compact;
- Metrizable;
- ► Almost every sample path (w_n) converges to a point in ∂G;
- Contains $\partial_{\kappa} G$ as a topological subspace for each κ ;
- A topology model for the Poisson boundaries;
- Homeomorphic to a natural Bowditch boundary.

Thank you for your time!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○