Boundary of Groups

Yulan Qing

Fudan University
Shanghai Center for Mathematical Sciences

February 2023

Geometric Group Theory: using geometric, topological and dynamical methods to study algebraic properties of groups.

$$
G=\left\langle s_{1}, s_{2}, \ldots \mid r_{1}, r_{2} \ldots\right\rangle
$$

Useful spaces:

1. Cayley graph:

- vertices: $g \in G$.
- edges: $(g, g s)$, where s is a generator.

2. Surfaces and manifolds, other complexes.
3. Word Problem: Find a uniform test or mechanical procedure (i.e. an algorithm) which, given a word $w=s_{i_{1}} s_{i_{2}} s_{i_{3}} \ldots$, can decide whether $w=1$.

Canonical equivalence classes: quasi-isometry equivalence

Different Cayley graphs of finitely generated groups are quasi-isometric to each other.

Definition

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces. A map $\Phi: X_{1} \rightarrow X_{2}$ is called a (q, Q)-quasi-isometric embedding if there exist constants $q \geq 1$ and $Q \geq 0$ such that for all $x, y \in X_{1}$

$$
\frac{1}{q} d_{1}(x, y)-Q \leq d_{2}(\Phi(x), \Phi(y)) \leq q d_{1}(x, y)+Q .
$$

"If a group G is quasi-isometric to a Euclidean plane, then G is virtually \mathbb{Z}^{2}."

Curvature in general metric spaces: Gromov hyperbolicity.

δ-hyperbolic space: there exists a constant δ such that every triangle is δ-thin. A group is δ-hyperbolic if its Cayley graph is δ-hyperbolic.

- Free groups of finite rank.
- Fundamental groups of closed surfaces of genus at least 2; Fundamental groups of closed, hyperbolic manifolds of higher dimensions.

This idea by Gromov led to a major breakthrough in geometric and combinatorial group theory in the following sense:
Gromov 87:

- solvable word problem.
- Finitely presented. If torsion free, then finite cohomological dimension.
- A generic group is hyperbolic.

Figure: A trivial word is a loop in the Cayley complex.

Boundary in hyperbolic groups: the space of all directions

Definition

Let X be the Cayley graph of a hyperbolic group G.
Elements: infinite geodesic rays emanating from the base-point.
Equivalence class: fellow traveling.
Cone topology: $\mathcal{N}(\gamma, t, \epsilon)=\{\sigma \in \partial X \mid d(\sigma(t), \gamma(t))<\epsilon\}$.

We call this topological space the Gromov boundary of G. The boundary is well-defined with respect to the associated group, compact, and metrizable (Gromov, 87).

Gromov boundary

$\partial \mathbb{H}^{2}=S^{1}$

$\partial F_{2}=\Sigma C$

Properties of the Gromov boundary:

- Group-invariant and metrizable;
- Large: different geodesic rays and different sample paths in a random walk end up at different points in the Gromov boundary.
Canon's Conjecture: If G is hyperbolic and ∂G is a 2 -sphere, then G is virtually Kleinian.

What about non-hyperbolic groups?

image credit: Andrew Yeghnazar

- Consider all directions: visual boundary of CAT(0) spaces, not a group invariant (Croke-Kleiner 00, Qing 16).
- Consider only the directions behaving like directions in Gromov hyperbolic space: Morse boundary, a small set of directions in some sense.(Charney-Sultan 13, Cordes 15)

Sublinearly-Morse directions

Space: (X, \mathfrak{o}) is a proper, geodesic space, with a fixed base-point \mathfrak{o}. A geodesic ray γ is Morse if there exists a family of gauge functions $m_{\gamma}(q, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that any (q, Q)-quasi-geodesic segment α with endpoints on γ is in a $m(q, Q)$-neighbourhood of γ.

Consequences:

- Quasi-isometry invariant.
- Fellow travel implies uniform fellow travel.

Fix a sublinear function $\kappa(t)$. Let $\|x\|=d(\mathfrak{o}, x)$.

A κ-neighbourhood around a quasi-geodesic γ is a set of point x

$$
\mathcal{N}_{\kappa}(\gamma, n):=\{x \mid d(x, \gamma) \leq n \cdot \kappa(\|x\|)\}
$$

Figure: A κ-neighbourhood of γ

Definition of κ-Morse directions

A quasi-geodesic ray γ is κ-Morse if there exists a family of functions $m_{\gamma}(q, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that any (q, Q)-quasi-geodesic segment α with endpoints on γ is in $\mathcal{N}_{\kappa}\left(\gamma, m_{\gamma}(q, Q)\right)$.

Consider all κ-Morse quasi-geodesic rays in (X, \mathfrak{o}). we say $\alpha \sim \beta$ if α, β sublinearly fellow travel, i.e.

$$
\lim _{t \rightarrow \infty} \frac{d(\alpha(t), \beta(t))}{t}=0
$$

The equivalence classes are elements of $\partial_{\kappa} X$.
Topology

- The cone topology on all κ-Morse geodesic rays does not produce a Ql-invariant space (Cashen, 19).
- Check the associated fellow traveling property for all quasi-geodesic rays for a bounded set of quasi-constants.

Equivalent Definition: "sublinear fellow travel implies uniform sublinear fellow travel".

A quasi-geodesic ray γ is κ-Morse if there exists a family of functions $m_{\gamma}^{\prime}(q, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}$ such for any sublinear function κ^{\prime} and for any $r>0$, there exists R such that for any (q, Q)-quasi-geodesic segment α we have that:

$$
d\left(\alpha_{R}, \gamma\right)<\left.\kappa^{\prime}(R) \Longrightarrow \alpha\right|_{r} \in \mathcal{N}_{\kappa}\left(\gamma, m_{\gamma}^{\prime}(q, Q)\right)
$$

Let $\partial_{\kappa} X$ denote the equivalence class of all κ-Morse quasi-geodesic rays equipped with the coarse cone topology.
Theorem (Q-Rafi 19, Q-Rafi-Tiozzo 21)
Let X be a proper, geodesic metric space. Fix a sublinearly function κ, the $\partial_{\kappa} X$ is a topological space that is invariant under quasi-isometry of X, and metrizable.

In particular, for every finitely generated group G and for every sublinear function $\kappa, \partial_{\kappa} G$ is well defined up to homeomorphism and it is a metrizable space.

Examples:

- $\mathbb{Z}^{2}: \partial_{\kappa} \mathbb{Z}^{2}=\emptyset$.
- \mathbb{H}^{2} : every (quasi-)geodesic ray is Morse and hence sublinearly Morse: $\partial_{\kappa} \mathbb{H}^{2}=S^{1}$.
- $\mathbb{Z} \star \mathbb{Z}^{2}$

Figure: A tree of flats.
thickness of the neighborhood in the $n^{\text {th }}$ flat: $\sim n$ distance of the $n^{\text {th }}$ flat to the origin: $\sim n^{2}$.

Specific classes of groups and spaces of negative curvature feature:

CAT(0) Space

Non-positively curved spaces (Cartan, Aleksandrov and Toponogov).

Figure: Model spaces, real 2-dimensional Riemannian manifold.

Figure: non-fat triangles

Examples include right-angled Artin groups, some braid groups and right-angled Coxeter groups, etc. CAT(0) groups have solvable word problems.

Evidence of genericity of sublinear directions:
 Patterson-Sullivan measures

Definition

More generally, let $G \curvearrowright X$ be any properly discontinuous action of a countable group on a metric space. For $\mathfrak{o} \in X$ let $B_{R}(\mathfrak{o})$ be the ball of radius R in X centered at \mathfrak{o}.
The (possibly zero or infinite) quantity

$$
\delta_{X}(G)=\lim \sup _{R \rightarrow \infty} R^{-1} \log \left|B_{R}(\mathfrak{o}) \cap G \cdot \mathfrak{o}\right|
$$

is called the critical exponent of the action $G \curvearrowright X$.

For $x, y \in X$ and $\zeta, \alpha \in \partial_{\text {vis }} X$ define the Busemann function

$$
\beta_{\zeta}(x, y)=\lim _{z \rightarrow \zeta} d(x, z)-d(y, z) .
$$

A $\delta(G)$-conformal density for $G \curvearrowright X$ is an absolutely continuous family of finite Borel measures $\nu_{x}, x \in X$ on the limit set $L(G)$ such that

$$
d \nu_{x} / d \nu_{y}(\zeta)=\exp \left(\delta(G) \beta_{\zeta}(y, x)\right)
$$

and $g \nu_{x}=\nu_{g^{-1} x}$ for any $x, y \in X$ and $g \in G$.

Figure: A fraction of the directions.

When $G \curvearrowright X$ is properly discontinuous and cocompact there is a unique conformal density for $G \curvearrowright X$; the measure $\nu_{\mathfrak{o}}$ is called the Patterson-Sullivan measure.

Wenyuan Yang 22: Morse boundary is measure zero in the visual boundary of CAT(0) spaces with Patterson-Sullivan measure.

Theorem (Gekhtman-Q.-Rafi 22)

Let $G \curvearrowright X$ be a countable group acting properly discontinuously by isometries on a geodesically complete rank-1 CAT(0) space X. Assume the action is cocompact. Let ν be the Patterson-Sullivan measure on the visual boundary of X. Then ν gives measure zero to the complement of sublinearly Morse directions.

Application: random walk on groups and Poisson boundaries

Let $\langle S\rangle$ be a symmetric generating set with a probability distribution μ. A random walk is a process on a group G (or its
Cayley graph) where sample paths are $s_{r_{1}} s_{r_{2}} s_{r_{3}} \ldots, s_{r_{i}} \in\langle S\rangle$.

Figure: A random walk.

Consider the set of all sample paths. We say two sample paths are equivalent if they coincide from some step onward.

- In hyperbolic groups, random walks tend to the boundary in linearly speed. In \mathbb{Z}^{2} random walks are recurrent.

Random walk on the free group vs. random walk on abelian group.

Poisson boundary

The asymptotic behaviour of all random walks is encoded by the Poisson boundary.

Definition

Given a finitely generated group and a probability measure μ with finite support, its Poisson boundary is the maximal measurable set to which almost all sample paths converge, with hitting measure ν arising from μ.
A natural problem is to determine when this space is trivial and, if it is not, to exhibit a geometric model.

Kaimanovich 96: Let G be a hyperbolic group, then Gromov boundary is a model for its associated Poisson boundary.

Relative hyperbolic groups

Definition

Relative hyperbolic group: A group G is relatively hyperbolic with respect to a subgroup H, if
I. after contracting the Cayley graph of G along H-cosets, the resulting graph equipped with the usual graph metric becomes a δ-hyperbolic space, and
II. Pairs of quasi-geodesics sharing the endpoints have bounded coset penetration property.

Mapping class group: Let S be a closed, oriented surface and consider

$$
\operatorname{Map}(S):=\operatorname{Homeo}^{+}(S) / \text { Isotopy }
$$

Thurston's drawing 1971.
Mapping class groups are in general not hyperbolic or relatively hyperbolic, not CAT(0). It acts nicely on curve graphs:

Curve graphs are infinite diameter and hyperbolic.

Theorem (Q-Rafi-Tiozzo, 21)

Let G be either

- a non-elementary relatively hyperbolic group, or
- a mapping class group,
and let μ be a probability measure whose support is finite and generates G as a semigroup. Then for $\kappa(t)=\log (t)$, we have:

1. Almost every sample path $\left(w_{n}\right)$ converges to a point in $\partial_{\kappa} G$;
2. The κ-Morse boundary $\left(\partial_{\kappa} G, \nu\right)$ is a model for the Poisson boundary of (G, μ) where ν is the hitting measure associated to the random walk driven by μ.

Proof idea: logrithmic excursions in projection system (Sisto-Taylor, 19).
The theorems address open questions regarding the invariance of Poisson boundaries posed by Kaimanovich.

- Relative hyperbolic groups
- Curve complex of subsurfaces in mapping class group.
- Hierarchically hyperbolic groups.

Let G be a group and let $\left(\mathcal{S}, Z_{0},\left\{\pi_{z}\right\}_{Z \in \mathcal{S}}, \pitchfork\right)$ be a projection system on G. Let $\left(w_{n}\right)$ be a random walk on G. Then there exists $C \geq 1$ so that, as n goes to ∞,

$$
\mathbb{P}\left(\sup _{Z \in \mathcal{S}} d_{Z}\left(1, w_{n}\right) \in\left[C^{-1} \log n, C \log n\right]\right) \rightarrow 1
$$

Inhyeok Choi 22: any finitely generated group with two independent contracting isometries.

Bonus theorem: Poisson boundaries of CAT(0) groups

Theorem (Karlsson-Margulis 99, Nevo-Sageev 11)
Let G acts geometrically on a $\operatorname{CAT}(0)$ space X. The visual boundary of X is a topological model for the Poisson boundary of G.

Theorem (Gekhtman-Qing-Rafi, 22)
For any rank-1 CAT(0) group G, there exists κ such that the κ-contracting boundary of the group a topological model for its Poisson boundary.

Idea: frequently contracting rays

01001011010101000001001111....

A unit speed parametrized geodesic ray $\tau:[0, \infty) \rightarrow X$ is $(N, C)-$ frequently contracting for constant $N, C>0$ if:
For each $L>0$ and $\theta \in(0,1)$ there is an $R_{0}>0$ such that for $R>R_{0}$ and $t>0$ there is an interval of time $[s-L, s+L] \subset[t, t+\theta R]$ and an N-contracting geodesic γ such that,

$$
u \in[s-L, s+L] \Longrightarrow d(\tau(u), \gamma) \leq C
$$

That is, every subsegment (of τ) of length θR contains a segment of length $2 L$ that is C-close to an N-contracting geodesic γ.

Important detail: the minimal κ-function varies with different groups!

Theorem (Q.-Tiozzo 19, Q.-Rafi-Tiozzo 21) the Poisson boundary can be identified with $\partial_{\kappa} G$ for the following groups.

- Right-angled Artin groups, $\kappa(t)=\sqrt{t \log t}$.
- Relative hyperbolic groups, $\kappa(t)=\log t$
- Mapping class groups, $\kappa(t)=\log t$.

Other properties of the sublinearly Morse boundaries of CAT(0) spaces:

- Visibility space: there exists a geodesic line that connects two classes in $\partial_{\kappa} X$ (Zalloum).
- Minimality: for each $\mathbf{a} \in \partial_{\kappa} X, G \cdot \mathbf{a}$ is dense in $\partial_{\kappa} X$ (Q.-Zalloum).
- Sublinearly Bilipschitz equivalence invariant (Pallier -Q.).
- superlinear divergence (Murray-Q.-Zalloum).

Sublinear BiLipschitz Equivalence (Cornulier, 09)

Definition (θ-SBE)

Let (X, \mathfrak{o}) and (Y, \mathfrak{o}) be proper geodesic metric spaces with basepoints. Let $L \geqslant 1$ be a constant, and let θ be a sublinear function as before. We say that $\Phi: X \rightarrow Y$ is a (L, θ)-sublinear biLipschitz equivalence (θ-SBE) if

$$
\begin{aligned}
\frac{1}{L} d\left(x_{1}, x_{2}\right)-\theta\left(\max \left(\left\|x_{1}\right\|,\left\|x_{2}\right\|\right)\right) & \left.\leqslant d\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right)\right) \\
& \leqslant L d\left(x_{1}, x_{2}\right)+\theta\left(\max \left(\left\|x_{1}\right\|,\left\|x_{2}\right\|\right)\right)
\end{aligned}
$$

and $Y=\mathcal{N}_{\theta}(\Phi(X), D)$ for some $D \geqslant 0$.
Theorem
Gromov hyperbolicity admits a characterization in terms of asymptotic cones, it is an SBE-invariant property.
Goal: Find other properties that are SBE invariant.

Theorem (Pallier-Q. 23')
Let Φ be an θ-SBE between two proper geodesic spaces X and Y. Suppose $\theta \preceq \kappa$. Then Φ induces a homeomorphism $\Phi_{\star}: \partial_{\kappa} X \rightarrow \partial_{\kappa} Y$.
Key idea: the image of a κ-Morse quasi-geodesic ray under a θ-SBE is still a κ-Morse set.

Application: Asymptotic cones of right-angled Coxeter groups

Definition

Let G be a simplicial graph on a set of S elements, then

$$
W=\left\langle s \in S: s^{2}=1, \text { and } s t=t s \text { if }(s, t) \in E(G)\right\rangle
$$

is a right-angled Coxeter group.
Examples

- If G is the complete graph on S, then $W=(\mathbb{Z} / 2 \mathbb{Z})^{|S|}$.
- If G has no edges, then $W=\mathbb{Z} / 2 \mathbb{Z} \star \ldots \star \mathbb{Z} / 2 \mathbb{Z}$, the free product of $|S|$ copies of \mathbb{Z}_{2}.

Example (Behrstock, 2015)

Figure: The graph for the group W vs W_{13}

Casals-Ruiz, Hagen and Kazachkov (working draft): W and W_{13} have unique asymptotic cones.

Question: Are W_{13} and W sublinearly biLipschitz equivalent? Answer: No. Since $\partial_{\kappa} W_{13}$ and $\partial_{\kappa} W$ are not homeomorphic, by the main theorem, the associated spaces cannot be SBE.

Compactification of the sublinearly Morse boundaries:

Let α, β be two quasi-geodesic rays in (X, \mathfrak{o}). We say that $\alpha \preceq \beta$ if any only if there exists a pair of constants (q, Q) such that for every $r>0$ there exists a (q, Q) quasi-geodesic ray γ^{r} such that

$$
\left.\gamma^{r}\right|_{r}=\left.\alpha\right|_{r} \text { and } \gamma \text { eventually coincides with } \beta .
$$

We say $\alpha \sim \beta$ if $\alpha \preceq \beta$ and $\beta \preceq \alpha$. Let $P(X)$ denote the equivalence classes of all quasi-geodesic rays under \sim.

Example: Baumslag Solitar groups.

Theorem (Q.-Rafi, 23)

Let G be a relative hyperbolic group with respect to subgroups that are flat-like. Then there exists a boundary ∂G that is

- Ql-invariant;
- Compact;
- Metrizable;
- Almost every sample path (w_{n}) converges to a point in ∂G;
- Contains $\partial_{\kappa} G$ as a topological subspace for each κ;
- A topology model for the Poisson boundaries;
- Homeomorphic to a natural Bowditch boundary.

Thank you for your time!

